Text Sync Tool - JavaScript
See file: txt_sync.js
The basis of the Text Sync Tool system is the browser’s HTML <audio>/<video> media-player.
The JavaScript watches that media player and updates the style and the position of elements within the Transcript and Gloss display areas.
This connection, between the media-player and the JavaScript, is made in the HTML within the <audio>/<video> tag via the attributes: onclick, onmousemove, and ontimeupdate .
The connection is also made (redundantly) in the JavaScript at the initial setup that occurs on completion of the page load event.
media = document.getElementById("sync_player");

media.setAttribute("ontimeupdate", "sync(this.currentTime)");
media.setAttribute("onmousemove", "sync(this.currentTime)");
media.setAttribute("onclick", "sync(this.currentTime)");

Subsequently, during the script initialization, each of the transcript has its data-start and data-stop attribute values read into arrays (these arrays have global scope).
Also, each of the color-coded speaker initials in the transcript display area is made clickable. When the initials are clicked, the media-player starts (and plays to the end of) the transcript segment that is contained within the same :
ts_tag_array = document.getElementsByClassName("txt_ln");

number_of_lines = ts_tag_array.length;

for (i = 0; i < number_of_lines; i++)
{
ts_start_time_array[i] = ts_tag_array[i].getAttribute("data-start");
ts_stop_time_array[i] = ts_tag_array[i].getAttribute("data-stop");
ts_tag_array[i].childNodes[0].setAttribute("onclick", "set_time_play_and_pause(" + ts_start_time_array[i] + ", " + ts_stop_time_array[i] + ")");
}

Finally, a check is made to see if the variable initial_time has been set to a value greater than 0.

	if (initial_time > 0)
	{
		try { set_time_play_and_pause(initial_time, initial_time_end); }
catch(error) { media.addEventListener("canplay", function() { set_time_play_and_pause(initial_time, initial_time_end); },true); }
	}

If initial_time is greater than 0, the synchronized transcript and media-player will jump to that position and play until initial_time_end is reached (see JavaScript at the end of the <body> of the HTML; also see HTML and PHP documentation).

[bookmark: _GoBack]After the initialization, the JavaScript provides two functions: set_time_play_and_pause, and sync.

set_time_play_and_pause updates the media-player’s position in the audio/video file. It takes two parameters: start_time, and end_time.

When set_time_play_and_pause is called, no matter if the media-player is running or stopped, the media-player time will be set to start_time and play until end_time is reached.

function set_time_play_and_pause(start_time, end_time)
{
	media.pause();
	clearTimeout(sub_time);
	play_time = Math.ceil((end_time - start_time) * 1000);
	media.currentTime = start_time;
	media.play();
	sub_time = setTimeout(function() { media.pause(); }, play_time);
}

Note: sub_time and media have global scope.

sync is called by the media-player to update the transcript display area. As the media-player plays it calls the sync function periodically and passes it the value of the current playtime.

sync first checks the dimensions of the of the scrolling transcript display area. The dimensions may change on a page resize event, so this check is done within sync rather than during initialization.

var txt_lns_rect = document.getElementById("txt_lns").getBoundingClientRect();
var mid_point = txt_lns_rect.top + ((txt_lns_rect.bottom - txt_lns_rect.top) / 2);

Also, there is a “magic number” hardcoded at this stage: 470

	var max_scroll = (document.getElementById("txt_lns").scrollHeight - 470);

470 is the height in pixels of the transcript display area minus 2 pixels for the top and bottom border (specified in the CSS file, txt_sync.css).

When the ETST was being developed, determining this value programmatically with txt_lns_rect.height was problematic due to standards compliance differences between browsers.

As it is, a change in the size of the transcript display area will require editing this hardcoded value.

sync then iterates over the arrays of transcript objects, looking for the with data-start and data-stop attribute values that match the current playtime:

if ((current_time >= parseFloat(ts_start_time_array[i])) && (current_time <= parseFloat(ts_stop_time_array[i])))

A matching is assigned an id attribute and value for the CSS to give it a background color:
ts_tag_array[i].setAttribute("id", "txt-current_" + i);
The is positioned in the center of the scrolling display area:	
while((document.getElementById("txt_lns").scrollTop < max_scroll) && ((ts_tag_array[i].getBoundingClientRect().top + ((ts_tag_array[i].getBoundingClientRect().bottom - ts_tag_array[i].getBoundingClientRect().top) / 2)) > mid_point))
{
document.getElementById("txt_lns").scrollTop++;
}

Lastly, a style attribute for the Gloss display is conditionally assigned:

ref_id = ts_tag_array[i].childNodes[2].getAttribute("id");
	
if(document.getElementById("r" + ref_id))
	{
		document.getElementById("r" + ref_id).style.display = "block";
	}

If the data-start and data-stop attribute values do not match the current playtime, then its CSS/style attributes are cleared/reset:

ts_tag_array[i].removeAttribute("id");

document.getElementById("r" + ref_id).style.display = "none";

