
Text Sync Tool - PHP

See file: txt_sync.php

This script requires a web server running PHP version 5.1.6 or newer, using the SimpleXML extension.

Expandable

This script has a minimal structure that is versatile and intended to be modified, extended and adapted

to the framework of any project.

For example, three variables are assigned values at the start of the script:

 $media_file = "example_audio.mp3";

 $eaf_file = "example_elan.eaf";

 $player_title = "When Timothy Fell in The Latrine";

These values could be delivered by POST or GET as part of a dynamic process by which this single script

would transcribe and present HTML from various ELAN files, chosen from a list through a form interface.

XML Parsing into HTML

Once the ELAN (XML) is loaded, the script loops through all of the <TIME_ORDER> <TIME_SLOT> tags

and pushes the TIME_VALUE attribute values into a one dimensional array:

foreach ($xml->TIME_ORDER->TIME_SLOT as $time_slot)
{

$time_slot_array[] = $time_slot['TIME_VALUE'];
}

Next it loops through the <TIER> tags looking for those with a LINGUISTIC_TYPE_REF attribute value of

“transcription” or “gloss”.

The value of the <TIER> PARTICIPANT attribute (the name of the person speaking) is split at blank spaces

and the first initials are extracted for CSS color-coded display in the speaker key and transcript display

area (see HTML and CSS documentation).

$speaker = $a_tier['PARTICIPANT'];

$speaker_parts = explode(" ", $speaker);

$spkr = "";

foreach($speaker_parts as $sp_prt) { $spkr .= substr($sp_prt, 0, 1); }

$tier_css = " tr" . $tier_count++;

$tier_list .= "" . $spkr .
" · " . $speaker . "\n";

If the <TIER> LINGUISTIC_TYPE_REF attribute value is “transcription” the script loops through the

<ANNOTATION> tags, extracting the ANNOTATION_ID attribute value and the integer portion of the

TIME_SLOT_REF1 and TIME_SLOT_REF2 attribute values of the current <ALIGNABLE_ANNOTATION> tag.

The TIME_SLOT_REF1 and TIME_SLOT_REF2 values become the keys to look up the TIME_VALUE

attribute values stored previously in the $time_slot_array[].

This array is indexed from 0, so 1 is subtracted from the key.

The values in the array are in milliseconds, so they are divided by 1000.

The resulting values, in seconds, become the data-start and data-stop attribute values of the individual

 tags in the transcript display area of the HTML.

The transcript text is extracted from the <ANNOTATION_VALUE> tag.

A string of HTML is assembled using the values found in each loop.

This string is pushed into an associative array using the TIME_SLOT_REF1 attribute value as the key for

subsequent sorting before being echoed as HTML.

foreach ($a_tier->ANNOTATION as $a_nnotation)
{

$time_start_ref = (int) substr($a_nnotation->ALIGNABLE_ANNOTATION['TIME_SLOT_REF1'], 2);
 $time_stop_ref = (int) substr($a_nnotation->ALIGNABLE_ANNOTATION['TIME_SLOT_REF2'], 2);
 $line_id = $a_nnotation->ALIGNABLE_ANNOTATION['ANNOTATION_ID'];

$resulting_span_string = "<li class=\"txt_ln" . $tier_css . "\" data-start=\"" .
$time_slot_array[$time_start_ref-1]/1000 . "\" data-stop=\"" .
$time_slot_array[$time_stop_ref-1]/1000 . "\">" . $spkr .
" : " .
htmlspecialchars($a_nnotation->ALIGNABLE_ANNOTATION->ANNOTATION_VALUE) .
"\n";

addArray($output_array, $time_start_ref, $resulting_span_string);

}

Note: the addArray() function, used to build the associative array, is defined at the top of the script:

function addArray(&$array, $id, $var)

 {
 $tempArray = array($var => $id);
 $array = array_merge($array, $tempArray);
 }

If the <TIER> LINGUISTIC_TYPE_REF attribute value is “gloss” the process is similar; though the output

strings do not require sorting because they become HTML <div> tags that are hidden/shown individually

by the JavaScript (see HTML and JavaScript documentation).

The script loops through the <ANNOTATION> tags, extracting the ANNOTATION_REF attribute value

from the <REF_ANNOTATION> tag and the transcript text from the <ANNOTATION_VALUE> tag.

A growing string of HTML is concatenated from the values found in each loop.

foreach ($a_tier->ANNOTATION as $a_nnotation)
{

$line_ref = $a_nnotation->REF_ANNOTATION['ANNOTATION_REF'];
$line_value = $a_nnotation->REF_ANNOTATION->ANNOTATION_VALUE;
$line_out = htmlspecialchars($line_value);
$spkr_out = $spkr;
$gloss_tier_string .= "<div class=\"txt_ref\" id=\"r" . $line_ref . "\"><span
class=\"spkr\">" . $spkr_out . " : " . $line_out
. "</div>\n";

}

Finally the HTML for the media player is generated and all the assembled and sorted strings are echoed

out to the HTML.

Further Possibilities

Note the inclusion of these three variables:

 $start_at_time = 0;

 $start_at_time_end = 0;

 $specific_start_line_id = "x0";

Within the loop through the <ANNOTATION> tags of a “transcription” <TIER>, the value assigned to

$specific_start_line_id is compared to the value of the ANNOTATION_ID attribute of the current

<ALIGNABLE_ANNOTATION> tag:

$line_id = $a_nnotation->ALIGNABLE_ANNOTATION['ANNOTATION_ID'];

if ($line_id == $specific_start_line_id)
{

$start_at_time = $time_slot_array[$time_start_ref-1]/1000;
$start_at_time_end = $time_slot_array[$time_stop_ref-1]/1000;

}

The values assigned to $start_at_time and $start_at_time_end are echoed to the HTML as values for

two variables used by the JavaScript to scroll to and play through to the end of a specific of

transcribed text (see txt_sync.js and JavaScript documentation)

 <script type="text/javascript">
 var initial_time = <?php echo $start_at_time; ?>;
 var initial_time_end = <?php echo $start_at_time_end; ?>;
</script>

This potential is not used in the script process as it is in the example files; however with some

modification it would be possible to pass a value to $specific_start_line_id by POST or GET.

